

Python MRCZ Documentation Reference

Contents:

	Introduction

	MRCZ Specification
	Required deviations from CCPEM MRC2014 standard

	Optional deviations from CCPEM MRC2014 standard

	Frequently Asked Questions

	API Reference

	Release Notes
	0.5.6

	0.5.6

	0.5.5

	0.5.4

	0.5.3

	0.5.2

	0.5.1

	0.5.0

	0.4.1

	0.4.0

	0.3.8

	0.3.7

	0.3.6

	0.3.5

	0.3.4

	0.3.3

	0.3.2

	0.3.1

	0.3.0

	0.2.1-4

	0.2.0

	0.1.4a1

	0.1.4a0

	0.1.3a2

	0.1.1a1

	0.1.0dev0

Indices and tables

	Index

	Module Index

	Search Page

Introduction

MRCZ is a union of the MRC file format with blosc meta-compression. blosc
is not a compression algorithm, rather it is a standard that supports most
popular compression algorithms. It can also apply lossless filters that
improve compression performance, such as the bitshuffle filter. It achieves
high-performance through the use of multi-threading the supported compression
codecs. Generally you should expect MRCZ to result in faster file read/write
rates, as the compression is faster than hard drive read/write rates, as well
as near entropy-limited compression ratios. So you get something for nothing.

Typical usage patterns are:

imageData, imageMeta = mrcz.readMRC('my_filename.mrcz')

where imageData is a numpy.ndarray and imageMeta is a Python dict
containing metadata. After some manipulation, you may want to then save to disk
so the file can be passed into a third-party application, such as a CTF estimation
tool. Here for maximum compatibility we will save it uncompressed (which
is the default keyword argument for compressor):

mrcz.writeMRC(imageData, 'passed_file.mrc', compressor=None)

Alternatively you may want to save an archival compression version of your
data in the background using the asynchronous feature. In this case, the exact
time when the write finishes is typically not a concern (although see the the
function documentation for finer control):

mrcz.asyncWriteMRC(imageData, 'my_newfile.mrcz', meta=newMeta, compressor='zstd', clevel=1)

See the API reference docs for detailed information on usage. The recommended
compression codecs and levels are:

	compressor='zstd' and clevel=1 for general archival use.

	compressor='lz4' and clevel=9 for speed-critical applications.

The bitshuffle filter is always used in MRCZ compressed files as it was
found to improve both compression rate and ratio with representative
electron microscopy data.

MRCZ Specification

In general MRCZ follows the CCPEM MRC2014 standard as outlined here:

http://www.ccpem.ac.uk/mrc_format/mrc2014.php

Please note we count bytes starting from 0. CCP-EM counts bytes starting
from 1.

Required deviations from CCPEM MRC2014 standard

	Word 4 (@ byte 16): The MODE parameter is now the sum of the MRC2014
MODE plus the blosc compression used * 1000.

The compressor enumeration is:

{ 0:None, 1:'blosclz', 2:'lz4', 3:'lz4hc', 4:'snappy', 5:'zlib', 6:'zstd' }

Unpacking is generally performed as follows:

mrcMode = numpy.mod(mrczMode, 1000)
compressor = numpy.floor_divide(mrczMode, 1000)

In practice any MODE > 1000 indicates the use of a compression codec.
blosc will discover the actual codec used itself.

	In the case where compressor != None, starting at byte 1024 (or 1024 +
EXTRA if the extended header is used) a c-blosc header is found. The
c-blosc header format specification may be found here:

https://github.com/Blosc/c-blosc/blob/master/README_HEADER.rst

blosc is limited to 2**31 bytes per chunk. Chunking for compression is
accomplished by compressing each slice/frame in the z-axis with a separate
call to blosc.compress(). Therefore the data section consists of NZ
structs of c-blosc headers followed by the packed bytes for the associated
slice/frame.

Optional deviations from CCPEM MRC2014 standard

	Word 33 (@ byte 132): Accelerating voltage in keV, float-32 format.
Deprecated.

	Word 34 (@ byte 136): Spherical aberration in mm, float-32 format.
Deprecated.

	Word 35 (@ byte 140): Detector gain in e^-/DN, defaults to 1.0.
Deprecated.

	Word 36-37 (@ byte 14): Size of compressed data in bytes stored as a 64-bit
integer, including blosc headers. Present for convenience only.

	Word 57 (@ byte 224): The ascii-encoded identifier label ‘MRCZ<version>’.
For example, ``b’MRCZ0.3.1’.

Failure to include any of these variables will not result in an exception.

JSON extended meta-data

When the keyword argument meta is used with writeMRC and
asyncWriteMRC the passed dictionary will be converted to UTF-8 encoded JSON
and written into the extended header. This is indicated by the ascii-encoded
bytes 'json' written into the EXTTYP variable of the MRC2014 header. The
length of the encoded JSON metadata is stored in the EXTRA variable of the
MRC2014 header.

Note: python-rapidjson is preferred but the standard library json
module is used as a fallback.

Frequently Asked Questions

Can I access individual slices in a compressed MRCZ file?

Currently not, as blosc does not record the indices of its individual
compressed blocks. The new feature of ‘super-chunks’, equivalent to slices or
frames in the context of microscopy, is expected to be implemented in
c-blosc2, currently under development at https://github.com/Blosc/c-blosc2

API Reference

	
mrcz.readMRC(MRCfilename, idx=None, endian='le', pixelunits='\AA', fileConvention='ccpem', useMemmap=False, n_threads=None, slices=None)

	Imports an MRC/Z file as a NumPy array and a meta-data dict.

	Parameters

	
	image: numpy.ndarray

	a 1-3 dimension numpy.ndarray with one of the supported data types in
mrcz.REVERSE_CCPEM_ENUM

	meta: dict

	a dict with various fields relating to the MRC header information.
Can also hold arbitrary meta-data, but the use of large numerical data
is not recommended as it is encoded as text via JSON.

	idx: Tuple[int]

	Index tuple (first, last) where first (inclusive) and last (not
inclusive) indices of images to be read from the stack. Index of first image
is 0. Negative indices can be used to count backwards. A singleton integer
can be provided to read only one image. If omitted, will read whole file.
Compression is currently not supported with this option.

	pixelunits: str

	can be 'AA' (Angstoms), 'nm', '\mum', or 'pm'. Internally pixel
sizes are always encoded in Angstroms in the MRC file.

	fileConvention: str

	can be 'ccpem' (equivalent to IMOD) or 'eman2', which is
only partially supported at present.

	endian: str

	can be big-endian as 'be' or little-endian as 'le'. Defaults
to ‘le’ as the vast majority of modern computers are little-endian.

	n_threads: int

	is the number of threads to use for decompression, defaults to
use all virtual cores.

	useMemmap: bool = True

	returns a numpy.memmap instead of a numpy.ndarray. Not recommended
as it will not work with compression.

	slices: Optional[int] = None

	Reflects the number of slices per frame. For example, in time-series
with multi-channel STEM, would be 4 for a 4-quadrant detector. Data
is always written contiguously in MRC, but will be returned as a list of
[slices, *shape]-shaped arrays. The default option None will
check for a 'slices' field in the meta-data and use that, otherwise
it defaults to 0 which is one 3D array.

	Returns

	
	image: Union[list[numpy.ndarray], numpy.ndarray]

	If slices == 0 then a monolithic array is returned, else a list
of [slices, *shape]-shaped arrays.

	meta: dict

	the stored meta-data in a dictionary. Note that arrays are generally
returned as lists due to the JSON serialization.

	
mrcz.writeMRC(input_image, MRCfilename, meta=None, endian='le', dtype=None, pixelsize=[0.1, 0.1, 0.1], pixelunits='\AA', shape=None, voltage=0.0, C3=0.0, gain=1.0, compressor=None, clevel=1, n_threads=None, quickStats=True, idx=None)

	Write a conventional MRC file, or a compressed MRCZ file to disk. If
compressor is None, then backwards compatibility with other MRC libraries
should be preserved. Other libraries will not, however, recognize
the JSON extended meta-data.

	Parameters

	
	input_image: Union[numpy.ndarray, list[numpy.ndarray]]

	The image data to write, should be a 1-3 dimension numpy.ndarray
or a list of 2-dimensional ``numpy.ndarray``s.

	meta: dict

	will be serialized by JSON and written into the extended header. Note
that rapidjson (the default) or json (the fallback) cannot
serialize all Python objects, so sanitizing meta to remove non-standard
library data structures is advisable, including numpy.ndarray values.

	dtype: Union[numpy.dtype, str]

	will cast the data before writing it.

	pixelsize: Tuple[x,y,z]

	is [z,y,x] pixel size (singleton values are ok for square/cubic pixels)

	pixelunits: str = u’AA’

	one of
- '\AA' for Angstroms
- 'pm' for picometers
- '\mum' for micrometers
- 'nm' for nanometers.
MRC standard is always Angstroms, so pixelsize is converted internally
from nm to Angstroms as needed.

	shape: Optional[Tuple[int]]

	is only used if you want to later append to the file, such as
merging together Relion particles for Frealign. Not recommended and
only present for legacy reasons.

	voltage: float = 300.0

	accelerating potential in keV

	C3: float = 2.7

	spherical aberration in mm

	gain: float = 1.0

	detector gain in units (counts/primary electron)

	compressor: str = None

	is a choice of None, 'lz4', 'zlib', 'zstd', plus 'blosclz', 'lz4hc'
- 'lz4' is generally the fastest.
- 'zstd' generally gives the best compression performance, and is still almost

as fast as ‘lz4’ with clevel == 1.

	clevel: int = 1

	the compression level, 1 is fastest, 9 is slowest. The compression ratio
will rise slowly with clevel (but not as fast as the write time slows
down).

	n_threads: int = None

	number of threads to use for blosc compression. Defaults to number of
virtual cores if == None.

	quickStats: bool = True

	estimates the image mean, min, max from the first frame only, which
saves computational time for image stacks. Generally strongly advised to
be True.

	idx

	can be used to write an image or set of images starting at a specific
position in the MRC file (which may already exist). Index of first image
is 0. A negative index can be used to count backwards. If omitted, will
write whole stack to file. If writing to an existing file, compression
or extended MRC2014 headers are currently not supported with this option.

	Returns

	
	None

	

	
mrcz.asyncReadMRC(*args, **kwargs)

	Calls readMRC in a separate thread and executes it in the background.

	Parameters

	
	Valid arguments are as for `readMRC()`.

	

	Returns

	
	future

	A concurrent.futures.Future() object. Calling future.result()
will halt until the read is finished and returns the image and meta-data
as per a normal call to readMRC.

	
mrcz.asyncWriteMRC(*args, **kwargs)

	Calls writeMRC in a seperate thread and executes it in the background.

	Parameters

	
	Valid arguments are as for `writeMRC()`.

	

	Returns

	
	future

	A concurrent.futures.Future object. If needed, you can call
future.result() to wait for the write to finish, or check with
future.done(). Most of the time you can ignore the return and let
the system write unmonitored. An exception would be if you need to pass
in the output to a subprocess.

	
class mrcz.readDM4(filename, verbose=False)

	A fast DM4 file reader to strip the data out of the large movie-mode files
generated by K2 detectors along with important tags. Due to the emphasis on
speed it’s not a general file parser with dynamic allocation, so if Gatan
changes the format a lot it will break the script.

	Parameters

	
	filename: str

	the

	verbose: bool

	whether to output debugging info or not.

	
discardTag(self)

	Quickly parse to the end of tag that we don’t care about its information

	
parseTag(self, parent)

	Parse a tag at the given file handle location

	
parseTagDir(self, parent)

	Parse a tag directory at the given file handle location

	
retrieveTagData(self, tag_ninfo)

	Get the actual data from the tag, which is then stored in one of the dicts or imageData

	
mrcz.test(verbosity=2)

	Run unittest suite for mrcz package.

	
mrcz.__version__

	The version of Python MRCZ.

Release Notes

0.5.6

	TODO

0.5.6

	In 0.5.5 a for-loop was omitted which lead to every frame being the zeroth
frame in the stack. For this reason, upgrading from 0.5.5 is _strongly_
recommended.

0.5.5

	Meta-data with keys that match those used in the header could accidently
overwrite critical values, such as ‘dimensions’. Any keys in the JSON
meta-dictionary that overlap with the standard values are now ignored.

	Integration tests are now performed for Python 3.8.

0.5.4

	Added support for serialization of Python Enum objects in JSON serialization
of meta-data.

0.5.3

	Ricardo Righetto added the means to append frames to a stack.

	Support for Python 3.4 was dropped as it is past end-of-life by Python.org.

0.5.2

	Improved on serialization of non-standard (i.e. NumPy) types in JSON-ized
meta-data by making use of the default callable in json.dumps. In particular
deeply nested NumPy types should now serialize without erroring. Note that
there is no support for complex numbers in JSON meta-data, as JSON itself
does not support it by default.

0.5.1

	Versions of MRCZ <= 0.4.1 were improperly writing the dimensions into the
(Mx, My, Mz) volume fields. Added a check for the MRCZ version tag, and if
an older file is found, it defaults to slices == 1, i.e. one 2D frame
per element in the returned list.
- In order to suppress the warning message, files can be read into memory and

re-saved. A utility script for batch processing is provided in
utils\update_mrcz_0.5.0.py.

0.5.0

	Added support for lists of 3D numpy.ndarray objects. This is largely intended
to support multi-channel STEM time series. Stores the number of channels per
frame in the MZ value of the MRC2014 header, which must be uniform for
every ndarray in the list. Any MRCZ archive that has a ‘strides’ key in the
JSON metadata will be returned as a list of arrays.
- See http://www.ccpem.ac.uk/mrc_format/mrc2014.php for header details
- asList keyword arguments have been removed.

	Fixed a bug in casting from float64/complex128 that was not actually casting.

	Cleaned up the code to be more PEP8 compliant.

0.4.1

	Improved docstrings in ioDM4.py.

	Added asyncReadDM4 function, analogous to asyncReadMRC.

0.4.0

	Fix a minor bug with casting for lists of arrays

	Improved uncompressed write times by not using list comphrension

	Add scaling block size for small format images (e.g. Medipix) to scale to
the number of threads.

	If the passed arrays are C_CONTIGUOUS and ALIGNED, writeMRC will use
blosc.compress_ptr instead of coverting the array to a bytes object
which is a significant speedup.

0.3.8

	Auto-casts np.float64 -> np.float32 and np.complex128 -> np.complex64
but logs a warning to the user.

0.3.7

	Updated MANIFEST.in and setup.py to make Conda-forge happy.

0.3.6

	mrcz.ReliablePy must be imported explicitely now, as it has requirements
that the base mrcz package does not. This file may be removed in the
future if no users are using it.

0.3.5

	If blosc is not installed and the user attempts to operate with compression
on an ImportError is raised.

	Documentation now using Numpy docstrings.

0.3.4

	Add (temporarily) MRC types for uint32 and int32 to support 24-bit detectors.
May break in the future, as the CCP-EM committee should make the final decision
on such enumerations.

	Added handling of NumPy scalars (i.e. np.float32(1.0)) in metadata so that
JSON serialization does not generate errors. Values will be case to Python
int or float as appropriate.

0.3.3

	Removed use of star-expansion of args as it breaks Python 2.7/3.4.

0.3.2

	Made blosc an optional dependency due to difficulties involved in building
wheels for PyPi.

	Implemented reading/writing of list of equally-shaped 2D ndarray`s instead of
a single 3D `ndarray, where the list represents the Z-axis. This approach
can be helpful for larger arrays that do not have to be continuous as the
operating system can more easily interleave them into memory.

0.3.1

	Added ascii identifier label ‘MRCZ’ + <__version__> to the labels. I.e. at
byte 224 in the header will appear b’MRCZ0.3.1’

0.3.0

	Documentation now available at http://python-mrcz.readthedocs.io/

	Added continuous integration testing with Appveyor and TravisCI, which was
previously handled by c-mrcz.

	Added handling for dask.array.core.Array objects.

	numpy.ndarrays inside meta dictionaries will be converted to list
objects to facilitate serialization.

	Updated license to BSD-3-clause from BSD-2-clause.

	Various bug fixes.

0.2.1-4

	Various bug fixes to incorporate into Hyperspy.

0.2.0

	Added support for asynchronous reading and writing.

0.1.4a1

	Fixed a bug with the machine-stamp not being converted to bytes properly.

0.1.4a0

	Fixed a bug in import of mrcz from ReliablePy

0.1.3a2

	Added ReliablePy, an interface for Relion .star and Frealign .par files.

	Fixes to maintain cross-compatibility with c-mrcz. Main functions are
readMRC and writeMRC. readMRC always returns a header now.

	Added mrcz_test suite, which also tests c-mrcz if it’s found in the path.

	Fixed bugs related to mrcz_test.py

0.1.1a1

	Renamed ‘cLevel’ to ‘clevel’ to maintain consistency with blosc naming
convention.

	Updated license from MIT to BSD 2-clause.

0.1.0dev0

Initial commit

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 mrcz	

Index

 _
 | A
 | D
 | M
 | P
 | R
 | T
 | W

_

 	
 	__version__ (in module mrcz)

A

 	
 	asyncReadMRC() (in module mrcz)

 	
 	asyncWriteMRC() (in module mrcz)

D

 	
 	discardTag() (mrcz.readDM4 method)

M

 	
 	mrcz (module)

P

 	
 	parseTag() (mrcz.readDM4 method)

 	
 	parseTagDir() (mrcz.readDM4 method)

R

 	
 	readDM4 (class in mrcz)

 	
 	readMRC() (in module mrcz)

 	retrieveTagData() (mrcz.readDM4 method)

T

 	
 	test() (in module mrcz)

W

 	
 	writeMRC() (in module mrcz)

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Python MRCZ Documentation Reference

 		
 Introduction

 		
 MRCZ Specification

 		
 Required deviations from CCPEM MRC2014 standard

 		
 Optional deviations from CCPEM MRC2014 standard

 		
 JSON extended meta-data

 		
 Frequently Asked Questions

 		
 API Reference

 		
 Release Notes

 		
 0.5.6

 		
 0.5.6

 		
 0.5.5

 		
 0.5.4

 		
 0.5.3

 		
 0.5.2

 		
 0.5.1

 		
 0.5.0

 		
 0.4.1

 		
 0.4.0

 		
 0.3.8

 		
 0.3.7

 		
 0.3.6

 		
 0.3.5

 		
 0.3.4

 		
 0.3.3

 		
 0.3.2

 		
 0.3.1

 		
 0.3.0

 		
 0.2.1-4

 		
 0.2.0

 		
 0.1.4a1

 		
 0.1.4a0

 		
 0.1.3a2

 		
 0.1.1a1

 		
 0.1.0dev0

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

